Indian Statistical Institute, Bangalore Centre. End-Semester Exam : Topics in Discrete Probability

Instructor : Yogeshwaran D.

Date : November 23rd, 2018.

Max. points : 40.

Time Limit : 3 hours.

Total points are 50. Answer as many questions as you can.

Give necessary justifications and explanations for all your arguments. Mention clearly results from the class or assignments.

- 1. Let C(G) be the size of the largest clique (i.e., a complete subgraph) in a graph G. Let G(n, p) denote the Erdös-Rényi graph with n vertices and the probability of an edge being present is p. Find the threshold function in p for the property $\{C(G) \ge 5\}$. (10)
- 2. Let $d \ge 1$ and consider bond percolation on \mathbb{Z}^d with probability $p \ge 0$.
 - (a) Let $x_1, \ldots, x_k \in \mathbb{Z}^d$ and $\tau_p(x_1, \ldots, x_n)$ to be the probability that x_1, \ldots, x_k belong to the same cluster. Show that $\tau_p(x_1, \ldots, x_n)$ is continuous as a function of p for all $x_1, \ldots, x_k \in \mathbb{Z}^d$. (5)
 - (b) For $S \subset \mathbb{Z}^d$, define $\phi_p(S) := p \sum_{x \in S, y \notin S} \mathbb{P}_p(o \overset{S}{\leftrightarrow} x)$. Show that if there exists a finite S such that $O \in S$ and $\phi_p(S) < 1$, then there exists a $c_p > 0$ such that $\mathbb{P}_p(O \leftrightarrow \partial \Lambda_n) \leq e^{-c_p n}$. (5)
 - (c) Let $p \in (0, 1)$. Let G_n denote the restriction of bond percolation to Λ_n and $K_{k,n}$ denote the number of components of size k in G_n . Show that $\mathbb{E}(K_{k,n}) = \Omega(n)$ and further for any $\epsilon > 0$, show that

$$\frac{K_{k,n} - \mathbb{E}(K_{k,n})}{n^{1/2+\epsilon}} \xrightarrow{P} 0.$$
(6)

3. A *cut* in a graph is a set of edges of the form $\{(x, y) : x \in A, y \notin A\}$ for some proper non-empty set A of G. Show that for every finite network G, the linear span of $\{\sum_{e \in \Pi} c(e)\chi^e : \Pi \text{ is a cut}\}$ is the star space of G. (4)

4. Suppose that L is a function of subsets of \mathbb{R}^d that is monotone in the sense that $L(\{x_1, \ldots, x_n\}) \leq L(\{x_1, \ldots, x_{n+1}\})$ and suppose further that there are non-negative weight functions $\alpha_i(x)$ for which for all $x = \{x_1, \ldots, x_n\}$ and $y = \{y_1, \ldots, y_n\}$, the set functional L satisfies $L(\{x_1, \ldots, x_n\}) \leq L(\{y_1, \ldots, y_n\}) + \sum_{i=1}^n \alpha_i(x) \mathbb{1}(x_i \neq y_i)$. Let the weight functions $\alpha_i(x)$ satisfy the uniform bound $\sum_i \alpha_i(x)^2 \leq c^2$. Show that if X_1, \ldots, X_n are i.i.d. uniform random variables on $[0, 1]^d$, we have that

$$\mathbb{P}(|L(X_1,\ldots,X_n) - M_n| \ge t) \le 4e^{-t^2/4c^2},$$

where M_n is a median of $L(X_1, \ldots, X_n)$. (5) See below for statement of Talagrand's inequality.

- 5. Let L_n be the length of a longest increasing subsequence of a uniform random permutation on [n] and M_n be a median of L_n . Show that $|L_n - M_n| = o(\sqrt{n})$ and $\mathbb{VAR}(L_n) = o(\sqrt{n})$. (5)
- 6. Suppose we throw m balls into n bins independently, uniformly at random and $Z_{n,m}$ be the number of empty bins. Show that

$$\mathbb{P}(|Z_{n,m} - n(1 - \frac{1}{n})^m| \ge b\sqrt{m}) \le 2e^{-b^2/2}.$$
(5)

7. Consider the lattice graph $\mathbb{Z}^d, d \geq 1$ with unit conductances on all edges. Define G_n to be the subnetwork induced by restriction to $\mathbb{Z}^d \cap [-n,n]^d$. Show that there exists $C_d > 0$ such that for all $x, y \in \mathbb{Z}^d \cap [-n,n]^d$, we have that

$$\mathcal{R}(x \leftrightarrow y; G_n) \ge \begin{cases} C_d |x - y| \ ; \ d = 1, \\ C_d \log |x - y| \ ; \ d = 2, \\ C_d \ ; \ d \ge 3. \end{cases}$$
(5)

Talagrand's convex distance and concentration Inequality : For $x = (x_1, \ldots, x_n) \in (\mathbb{R}^d)^n$ and $A \subset (\mathbb{R}^d)^n$, define

$$d_T(x, A) = \sup\{z_{\alpha} : z_{\alpha} = \inf_{y \in A} \sum_{1 \le i \le n} \alpha_i(x) \mathbb{1}(x_i \ne y_i) \& \sum_i \alpha_i(x)^2 \le 1\}.$$

Talagrand's inequality states that $P(A)P(d_T(x, A) > t) \leq e^{-t^2/4}$ where P is a product measure on $(\mathbb{R}^d)^n$ and t > 0.